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Product Integration for Weakly Singular 
Integral Equations 

By Claus Schneider 

Abstract. The product integration method is used for the numerical solution of weakly 
singular integral equations of the second kind. These equations often have solutions which 
have derivative singularities at the endpoints of the range of integration. Therefore, the order 
of convergence results of de Hoog and Weiss for smooth solutions do not hold in general. In 
this paper it is shown that their results may be regained for the general case by using an 
appropriate nonuniform mesh. The spacing of the knot points is defined by the behavior of 
the solution at the endpoints. If the solution is smooth enough the mesh becomes uniform. 
Numerical examples are given. 

In this paper we consider the numerical solution of the second kind equation 

Ax(s) - fb g(j S-tlj)k(s, t)x(t) dt = y(s), s E J :l [a, b], 
a 

(1) with ge(s) := sa-l, 0 < a < 1, gI(s) := log(s), 

where 0 o#X E R, y E C(J), and k E C(J x J). 

Symbolically, we write (1) as (XI - K)x = y. Then K is a compact operator on 
(C(J), sup), and a unique continuous solution of (1) exists, if and only if X is not an 
eigenvalue of K; cf. Atkinson [2]. 

Integral equations of this kind arise from potential problems, Dirichlet problems, 
the description of hydrodynamic interaction between elements of a polymer chain 
in solution, mathematical problems of radiative equilibrium, and transport prob- 
lems; see Delves and Walsh [8], Atkinson [3], Auer and Gardner [4], [5], Hopf [9], 
Kaper and Kellogg [10]. 

Now let Snm be the set of piecewise polynomials of degree m - 1 on the grid 
A:= {a=To<T<. * <Tn=b ),{(O 1 <S2< ..<sm 1} a partition 
of the unit interval, and Pn: C(J) - Sn the interpolatory projection defined so 
that Pn v interpolates v E C(J) at the m points tV, := T + s/ITi+Il - T) on each 
subinterval [Ti, Ti + I], i = O(l)n - 1, j = l(1)m. Then a product integration solution 
to (1) is a function xn satisfying 

(2) Xxn(s)-X - (|s- tl)[Pn(k(s, )x.)](t) dt = y(s), s EJ, 

or (I - Kn)xn = y, respectively. 

It can be shown that Kn is a sequence of consistent, collectively compact operators 
approximating K; cf. Anselone [1], Atkinson [2]. Thus, it follows-if X is not an 
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eigenvalue of K-that for sufficiently large n there exists a uniquely defined solution 
xn of (2) and 

(3) llx< -xllO ? CIIKx - Knxllo 
with C depending only on K and X; see Anselone [1]. 

Assuming a smooth solution and a uniform grid A, Ti = a + (b-a)i/n, i= 
0(l)n, de Hoog and Weiss showed in [7] that 

m 

M f I (s. - s) ds # 0 and x E Cm(J) implyIx - Xnll. = O(n-m), 
(4) ? =i 

if M = O and x E Cm+ (J), 

then 

f 
O(nra), 0 <a < 1, 

lix - XflloOn - (n-m-llog(n)), a = 1. 

I.e., a quadrature rule with M = 0 (for example product Simpson or product 
Gauss) yields better convergence. 

Unfortunately, weakly singular integral equations often have solutions contain- 
ing mild singularities at the endpoints a and b introduced by the kernel. Then the 
best result for uniform grids-proven by Chandler [6]-is 

IIX -Xnllo ?(9fn-2a), 0 < a K<1 
lix - flhIoo - = (n-2log(n)), a = 1. 

Nevertheless, we will show that the order of convergence result (4) remains true if 
an appropriate nonuniform mesh A is used. At first, let us summarize regularity 
properties of the solution x (cf. [15]) in a form which will be sufficient for our 
purposes. 

THEOREM 1. Let ,u E N, k E C-u+l(J x J), y E CZl(J), 0 < a S 1, X not an 
eigenvalue of K, and x the solution of (1). Then x E Cu(int(J)), and there exists a 
/3 E [a, ,u], if 0 < a < 1, or, if a = 1 (the logarithmic case) for any E E (0, 1) there 
exists a /3 E [1-, Kt] such that 

(A(s)I < ci (s a) , a <s <(a + b)/2, 

(b - 5)f', (a + b)/2 < s <b, 

with Holder constants Ci, i = 1(1) f. I.e., x is of type (f,, ,u, (a, b}), a notion 
introduced by Rice [12]. 

REMARKS. 1. In general, /8 will not be greater than a or 1 - E, respectively, and 
then x a C '(J). 

2. The statements of the theorem remain valid if y is only assumed to be of type 
(a, ft, {a, b)) or if y is of type (1 - c, ft, {a, b)) for any ? E (0, 1). 

3. A function of type (y, A, u{a, b}) with N -1 y <N E N, N < A, is an 
element of CN- 1(j) 

4. For other characterizations of the solution and further smoothness results see 
Richter [13], Kaper and Kellogg [10], Pitkaranta [11], Chandler [6]. 
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In order to approximate such functions by piecewise polynomials Rice [ 12] 
introduced a mesh A with knot points 

(5) i= ( a2 )() n 
O 

Ti :=(a + b) - n- i n/2 < i < n. 

A first order of convergence result is obtained with this mesh. 

THEOREM 2. If x is the solution of (1), m > /3 > a, x of type (/3, m, (a, b)) or x of 
type (/3 - c, m, (a, b)) for any ? E (0, /3)-i.e. x contains logarithmic endpoint 
singularities-, and xn the solution of (2) with the nonuniform mesh (5) and the grading 
exponent q := m//3 or q := m/( / - ) in the logarithmic case, 0 < c </3, then 

lix - Xnll. = O(nm). 

Proof. By (3), 

iX - xnlloo < CIIKx - Knxlloo < C'maxIIk(s, )x - Pn[k(s, )x]lDII 

and, independently of s, the error in the approximation of k(s, )x by Pn is of order 
n-m if q is chosen as supposed; cf. Rice [12] and [14]. 

Thus, the result (4) of de Hoog and Weiss is regained in the case M 7# 0, and a 
smooth x (x E Cm(J), i.e. /8 = m) leads to the uniform mesh. Now we will study 
the influence of the partition {sj) which characterizes the quadrature rule used in 
product integration. 

THEOREM 3. Let M = 0. If x is the solution of (1), m + 1 > /3 > a, x of type 
(/3, m + 1, (a, b)) or x of type (/3 - c, m + 1, (a, b)) for any - E (0, /), xn the 
solution of (2) with the nonuniform mesh (5) and the grading exponent q := 
(a + m + 1)/(a + /3) or q := (a + m + 1)/(a + /B-c) in the logarithmic case, 
0 < c < 8, then 

I O(n-M a), 0 <a < 1, 
li x - XnlhlO = O(n mlIlog(n)), a = 1. 

Proof. The proof will show that there is no loss of generality by taking k(s, t) 
1. 

Let 

E(ga, x) fbga(|s- tl)tx(t) - (Pnx)(t)) dt 

be the error committed by the product integration. Further, define 

Ei(ga, x) g=(|s - tl){(I - Pn)x}(t) dt and 

I i T' T I, i=0 ln -1 
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If 01 = const =: pj is a piecewise constant function, then 

Ei(ga, x) =JEj(g. - 0,x) + Ei(4, x) 

(6) < ga- 1,,jIX PnXI1ooJ, + 4il f(x - PnX)(t) dt 

Now let 

1 = f I g(Is - tl) dt. 

Then Chandler [6] showed: 

(i) y <a ==> (Ti+1 - Ti) - ?lg,'-011u. S C 
n 

'-Y 
0< a < 

1 

n-I ii 
0< a K 1: sup(i+ 1 - C C, 

(ii) i= o 

a = 1: n-1 
... li l -<c 

i=o 1log(Ti+1 -Ti)l 

and the constants C are independent of n and s. 
Summing the inequality of (6) over i shows that 

n-I 

( E( ga, x) | < IgE 1 -| 41,II,X - PnX100J,I 

(7) i=o 
n-I 

i)j_ I4Oin-i + SUp(-r, l - E (Tj+ - Tj)'|' (x Pnx)(t) dt. 
i=O i=O 

Let us first study the last term in (7): if i = 0 or i = n - 1, then 

f(x - Pnx)(t) dt < CQT1 - To)T' = Cn-q(#+ 1); 

cf. Rice [12]. In the other intervals the error of the quadrature rule (M = 0) may be 
estimated by 

fX _ pnX)(t) dt?CQ~1-)mfI(+)Io | J(X n X( t dt| <C(Ti + _-Ti)m +2 lI X(M +1) l01i 
[ j + 1 

q 
(j)] m+2( )Iq(- m-l) 

with 

.{ -i-l 0<i<n12, 
n n- I 1, n12 <i <n -1 
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because x is of type (/13, m + 1, {a, b}); cf. Rice [12]. Now (ii) implies 
n-i 

I E(0, x)| =I I |Ej(, x) I 
i=o 

< C (? T - T)a-In-q( + ) 

+ (ri+1 - +X- 

+ 
(T +l - r) [ 

(n ) (n )]( n)) 

2 1 n12-1 - 

'i C nq(a+f#)} I + i(q-1)(a-1+m+2)+q(,0-m-1) 
i= r= J 

( n/2-1 

=<C n q(a+f) 1 + i q(a+g)-(a +m+l)5 C n + 

- C'nq(a+fi)nl/2 = (9(n`r-a) 

Let us now inspect the first term of (7), and we will further assume that a < /8 < 
m: 

E(g, -, x)| I Cf C ga lg- OII,0(Tj - To) +lga - 
kfll, Ij(Tn Tn-I) 

n-2 

+ I jlga 
- 

ll,I,(Ti+1 - T) ||X 0|j) 
i=l1 

(cf. Rice [12] and [14]) 

< C I 
Ilga 

- (lIIi,io(Ti - a)f + Ilga - 1||,.,(b - -nI )f 

n-2 )m q(-m)} 
+ 119a I- -ll (Ti+1 T) n 

with 

i=Oori = n- 1, 
j := 0 i, O < i < n/2, 

n n-i-1, n/2 < i < n-1, 

< Cj n( liga 
- 

o10j(TI a)+ +lJg, - olj1,,4 ,(b Tn-I) y] 

n-2 J(q-1)(m +y) * q(fl-m)] 
+ Iga - kll1i,,(Ti+1 s ) -)Yn (i J 

n q(m + y)n\l! 
n-I 

= C n (_y) E llga _| 1pl,I,(7Ti+j _ T) >j(8y) +y 

i=O 

If q (m + -y)/( ,8 + -y), then this expression is equal to 

n-I 

= C"nmY E l1ga- l1l,I,(Ti+1 -T) 
i=O 

If y < a, then (i) implies 

< C "n m Yn-a+y = C(n-`a) 
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On the other hand, we have already chosen the grading exponent q= 
(m + a + 1)/(a + /8). Therefore taking y = a(m - 8 - 8/a)/(m - / + 1), this 
y is well defined and smaller than a for 0 < a < 8 < m. If m + 1 > /8 > m, then 
x E Cm(J) and 

n-i 

IE(ga - ?) x)I < C E Ilga - jj,j,(Tj+j - Ti)' = ((n-m) 
i =O 

by (i) for any q > 0. The modifications for the logarithmic case are rather technical 
and therefore omitted. 

By the theorems, the order of convergence result (4) is now established for the 
product integration solution of a weakly singular integral equation (1) and again a 
smooth x (x E Cm+'(J); i.e., /8 = m + 1) yields the uniform mesh. The grading 
exponent in the last two theorems is optimal in the sense that a q smaller than 
supposed leads to a smaller order of convergence. If there is no knowledge in 
advance that /8 happens to be greater than a (i.e., x is smoother than expected), 
and if for this reason the grading exponent used is greater than necessary, then the 
order of convergence does not decrease. 

For numerical verification of the above theorems we consider two examples. (All 
computations were done on the HB 66/80 of the Rechenzentrum der Johannes 
Gutenberg-Universitat Mainz, in double precision.) 

Example 1. a = 0, b = 1, a = 0.5, X = 2, k(s, t) = 1, and y is chosen so that 
x(s) = 2(Vs- + 1- s). Then x is of type (0.5,, (0, 1)) for any j E N; i.e., 
,/ = a = 0.5, buty is of type (1 - -,j, {0, 1)) for any - E (0, 1) andj E N. 

maxIx(ti) - xn(tij), i = 0(1)n -1, j = 1(1)m: 
ij 

Trapezoidal rule Simpson's rule Gauss-Lobatto 
m = 2, M =# O m = 3, M = O m = 4, M = O 

n(m -1I) | q = | m + a +I m + a + I = I n(m q 
1 

q q ~a +f q=1 q= a +fi q 

24 1.6310 - 2 2.651o - 2 1.171o - 3 9.701O - 3 6.9110 - 4 6.271o - 3 
48 4.1510 - 3 9.411 - 3 8.5810 - 5 3.4710 - 3 2.361o - 5 2.541o - 3 
96 1.061o - 3 3.3310 - 3 5.7410 - 6 1.8110 - 3 7.7510 - 7 1.431o - 3 
192 2.6810 - 4 1.171o - 3 3.7110 - 7 9.921o - 4 4.101o- 8 7.701o - 4 

Example 2. a = 0, b = 1, a = 0.5, X = 2W, k(s, t) = 1, andy is chosen so that 
x(s) = 2V2 [s(1- S)]314. Then x and y are of type (3/4, j, (0, 1)) for any j E N; 
i.e., /3 = 3/4 > a. 

maxIx(t,) -x.(tij) : 
ij 

Trapezoidal rule Simpson's rule Gauss-Lobatto 
m = 2, M # 0 m = 3, M = 0 m = 4, M = O 

m m + a + m + a + I 
n(m -1) qq==1 q= q= q= +f q= 

24 8.5610 - 3 3.3510 - 2 5.9110 - 4 1.2810 - 2 1.7710 - 3 7.5610 - 3 
48 2.1710 - 3 1.4410 - 2 4.251o - 5 4.4310 - 3 4.681 - 5 2.901O - 3 
96 5.7710 - 4 5.0910 - 3 2.9410 - 6 1.671o - 3 1.381o - 6 1.1110 - 3 
192 1.511 - 4 1.6410 - 3 2.0310 - 7 6.421o - 4 7.1610 - 8 4.2610 - 4 
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In either case, the nonuniform mesh yields better results, and the additional 
computational labor (n/2 exponentiations) is minimal. 
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